Multi-modal Image Registration Using the Generalized Survival Exponential Entropy

نویسندگان

  • Shu Liao
  • Albert C. S. Chung
چکیده

This paper introduces a new similarity measure for multimodal image registration task. The measure is based on the generalized survival exponential entropy (GSEE) and mutual information (GSEE-MI). Since GSEE is estimated from the cumulative distribution function instead of the density function, it is observed that the interpolation artifact is reduced. The method has been tested on four real MR-CT data sets. The experimental results show that the GSEE-MI-based method is more robust than the conventional MI-based method. The accuracy is comparable for both methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Mutual Information Similarity Measure for Registration of Multi-Modal Remote Sensing Images

Registration of multi-modal remote sensing images is an essential and challenging task in different remote sensing applications such as image fusion and multi-temporal change detection. Mutual Information (MI) has shown to be successful similarity measure for multi-modal image registration applications, however it has some drawbacks. 1. MI surface is highly non-convex with many local maxima. 2....

متن کامل

Spatial Information in Entropy-Based Image Registration

Information-theoretic approaches (e.g. mutual information) have yielded accurate and robust similarity measures for multi-modal and mono-modal image registration. However, recent research suggests that registration based on mutual information has room for improvement. The paper proposes a method for including spatial information in this approach by using spatial feature vectors obtained from th...

متن کامل

Entropy and Laplacian images: Structural representations for multi-modal registration

The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these metrics, in comparison to measuring the intensity difference with, e.g. L1 or L2 distance, is the increase in computational complexity and consequently the increase in runtime of the registration. An alternative approach, which has not yet gained m...

متن کامل

Multi-modal Image Registration by Quantitative-Qualitative Measure of Mutual Information (Q-MI)

This paper presents a novel measure of image similarity, called quantitative-qualitative measure of mutual information (Q-MI), for multi-modal image registration. Conventional information measure, i.e., Shannon’s entropy, is a quantitative measure of information, since it only considers probabilities, not utilities of events. Actually, each event has its own utility to the fulfillment of the un...

متن کامل

Entropy-based Image Registration

This thesis investigates the employment of different entropic measures, including Rényi entropy, in the context of image registration. Specifically, we focus on the entropy estimation problem for image registration and provide theoretical and experimental comparisons of two important entropy estimators: the plug-in estimator and minimal entropic graphs. We further develop an image registration ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 9 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006